공기 중 이산화탄소로 친환경 플라스틱 생산...KIST 개발
이산화탄소로부터 친환경 바이오플라스틱을 직접 생산하는 생물-전기 융합시스템 개발
세계 최고 수준의 미생물 유래 친환경 바이오플라스틱(PHA) 생산성 달성
윤구현기자
승인
2024.06.28 22:37
의견
0
기후변화와 환경오염 문제를 동시에 해결할 수 있는 이산화탄소에서 바로 바이오플라스틱을 만들어 내는 기술이 주목받고 있다.
CCU(Carbon Capture and Utilization) 기술로 생산되는 화합물은 생분해성인 경우가 적고 복잡한 화학반응 단계를 거쳐야 한다. 반면, 미생물을 이용해 이산화탄소로부터 친환경 생분해성 플라스틱을 생성하는 기술은 플라스틱 폐기물 문제를 해결할 수 있으며 이산화탄소를 플라스틱으로 전환하기 위한 추가적인 에너지 투입이 적어 차세대 이산화탄소 전환 기술로 평가받고 있다.
한국과학기술연구원(KIST, 원장 오상록) 청정에너지연구센터 고자경·이동기 박사 연구팀은 전기화학 시스템과 미생물 배양 시스템을 결합해 공기 중 이산화탄소에서 친환경 바이오플라스틱인 폴리하이드록시알카노에이트(PHA, Polyhydroxyalkanoate)를 효율적으로 생성할 수 있는 생물-전기 융합기술을 개발했다고 밝혔다.
PHA는 미생물에 의해 합성되는 천연 고분자로 토양뿐 아니라 해양 환경에서도 생분해되며 식품 포장재, 의료용품 등에 사용된다.
연구팀은 이산화탄소를 먹고 PHA를 만드는 능력을 지닌 수소 산화 박테리아에 주목했다. 이 미생물의 배양을 위해 물을 전기 분해해 실시간으로 생산된 수소를 에너지원으로 공급하고 이를 통해 이산화탄소로부터 바이오플라스틱을 생산할 수 있는 생물-전기 융합시스템을 개발했다.
그러나 물을 전기 분해하는 과정에서 독성물질인 활성산소와 금속이온이 부산물로 생성돼 미생물의 성장을 저해하는 문제가 있었다.
이를 해결하기 위해 미생물에 대한 독성이 매우 낮고 쉽게 금속으로 돌아갈 수 있는 특성을 가진 구리가 첨가된 촉매를 개발했다.
또한, 연구팀은 개발된 촉매의 표면에 코팅된 구리가 미생물 배양액에 녹았다가 다시 전극으로 돌아가는 순환과정에서 활성산소를 빠르게 분해하는 독성물질 자가 해독 메커니즘을 규명하는 데 성공했다.
그 결과, 기존 촉매를 활용할 때보다 수소 생산성 및 활성산소 제거 속도가 높아졌을 뿐만 아니라 활성산소 생산량이 감소해 300mg/L이었던 미생물 유래 PHA 생산성을 세계 최고 수준인 487mg/L으로 높였다.
연구팀은 이산화탄소로부터 생성되는 PHA의 대량생산을 위해 생물-전기 반응조 대용량화 및 반응 조건 최적화 연구를 수행할 예정이다.
이를 통해 석유 기반 플라스틱이나 다른 바이오플라스틱보다 2~5배 높은 생산 단가를 낮춤으로써 미생물 유래 PHA가 비닐, 플라스틱 용기 등 다양한 시장에서 탄소중립을 동시에 실현할 수 있는 차세대 친환경 플라스틱으로 자리매김할 것으로 기대된다.
KIST 고자경 박사는 “이번 연구 성과는 생물공학과 전기화학 분야의 융합 원천 기술로 전기에너지로 이산화탄소를 복잡한 고분자 물질로 바로 변환할 수 있음을 보여주는 좋은 사례”라며 “대기 중 이산화탄소를 직접적으로 감축할 수 있는 탄소중립을 위한 핵심 기술로 많은 발전과 활용이 기대된다”라고 밝혔다.
* (논문명) Biocompatible Cu/NiMo Composite Electrocatalyst for Hydrogen Evolution Reaction In Microbial Electrosynthesis; Unveiling the Self-Detoxification Effect of Cu
윤구현기자
저작권자 ⓒ 뉴스커런트, 무단 전재 및 재배포 금지